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ABSTRACT

Consider the nonlinear integrodifferential system

[

w () = - a(x)I(x,t)ax, T, = T+ a(e(u(t)),

with initial-boundary conditions
u(0) = u, T(x,0) = f(x), TX(O,t) = Tx(w,t).

Let a, and U be the zéroth Fourier cosine coefficients of ¢
and 1. Under certain general assumptions it is known that if
an, # 0, then u(t) and T(x,t) tend to zero as t —w. We
show that when a N, = O +the functions u and T have limits as

t - o, These limits are complicated but can be explicitly expressed.




AN UNSTABLE NONLINEAR INTEGRODIFFERENTTAL SYSTEM

R. K. MILLER

I. INTRODUCTION.

We shall study the behavior as t — o of solutions of the

nonlinear system

- .

(1) w () = - a(x)T(x,t)dx, T, = T + n(x)e(u(t)), (0 <x <t >0)
o

where ' = d/dt. We assume initial-boundary conditions

(2a) u(0) = U, T(x,0) = £(x), (0= xs )

(2b) TX(O,t) = TX(W,’G) =0. (0<%t <w

In case g(u) = exp(u)-l, these equations describe the be-
havior of a continuous medium nuclear reactor idealized as a slab
of length T with insulated faces. The unkown u 1is the logarithm
of reactor power while T represents the difference between the
actual and the design-equilibrium temperatures.

We introduce the Fourier coefficients

T m
o, = (\f§/a)f a(S)dS,Qh = (2/m)[ a(s)cos ns ds
o) o
for n = 1,2,3,... . Similarly n, and fn are the Fourier cosine

coefficients of n and f. Define two sequences




G) hn &Ny kn = o%fn (n=0,1,2,...)

and two functions

(4a) a(t) = (m/2) E hnexp(-ngt),
(L) b(t) = (m/2) g knexp(—ngt). (0 = t < ).

Nn=0

Then the solution u of (1,2) must satisfy the Volterra integro-

differential equation

t
(5) w (t) = -b(t) - [ a(t-s)g(u(s))ds, u(0) = u_.

Once the solution of (5) is known, the function T(x,t) is given

by
(6) T(x,t) = To(t)/\r§-+ g Tn(t)cos nx,
n=1

where for n = 0,1,2,... we have

t > 2
(7 1 (5) = (40, f exp(ns)a(u(s))as) exp(-r%).

Bronikowski [1] studied (1,2) when g(u) = u is linear.

Under certalin assumptions he shows that if hO > 0 the functions




]

u(t) and T(x,t) decay to zero exponentially as t — w, Using
the exponential decay one can prove the local stability of the
trivial solution u =0, T= 0 of the nonlinear problem (1,2).
Levin and Nohel [2] also study the nonlinear problem (1,2). In the
stable case ho > 0 they show that the trivial solution of (1,2)
is globally asymptotically stable. They also obtain a result in
case Ob =7, = 0. The purpose of this paper is to obtain complete

results in the case where hO = 0. We prove:

THEOREM 1. Suppose the following assumptions are true:

(A1) £,£, 0 and e L7(0,m),

(a2) h 20 forall n and h >0 for at least one

n >0,

(A3) g is locally Lipschitz continuous on - < u < o,

(Ak) ug(u) >0 if u #0,

(15) C(u) = [ g(s)ds o as |u| =

(A6) there exists K >0 such that |g(u)| s K(G(u)+1) for

all u, and

(A7) &'(0) exists and g'(0) > O.

lﬁ ho = ko = 0 then the solutions u and T exist for all

2

t =2 0 and satisfy

a) u(j)(t) -0 as t-w (j=0,12)

i
|



b) g(u(t)) e L'(0,=), snd

c) the limit T(x,t) exists uniformly in 02 x £ 7 as

t - 0 and this limit equals

(fo+no f g(u(s))ds)/\rg.

THEOREM 2. Suppose h =0, k # 0 (i.e. af_ # O,n, = 0). Let

(A1-2) be true and suppose g satisfies
(A8) g € Cl(—OO,OO) with g'(u) >0 for all u,

(A9) for each u, there exists K = K(ul) > 0 such that

1

| g(u+ul) —g(ulﬂ < K(G(u+ul) —G(ul) —ug(ul)+l) .

[}
Define =-k /(Xnh n—g). If there exists wu, such that g(u,)
B ot m = 1 = = 1

M then the solution u and T exist for all t >0 and

2

a) u(t)—>ul as t - o,

b) u'(t) and u'(t) »0 as t -,

c) lim T(x,t) = fo/\r5+ g(ul) gl(nncos nx)/n2
n=

t 5

uniformly for 0O £ x £T.

If g(u) >M (< M) for all wu, then

a) u(t) - +w (-) as t - o

e) lim T(x,t) = fo/\ré + g*ozo (nncos nx)/n2
n=1

t—)oo

where g¥ = limit g(u) as u —+w (-»).

i
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~ Note that when g(u) = exp u;l the conditions (A3), (aAk),
(85), (A7) and (A8) are clearly true. It is easily shown that (A6)
is true for any K > e(e—l)~l. Similarly in (A9) we can take
K > e(e—l)_lmax {eXp(ul),l]. For this g we cannot have M > g(u)
in Theorem 2. It is possible to have M < g(u), that is M= -1 <

exp(u)-1 for all u s O.

II. PRELIMINARIES.

We need the following lemma which is a special case of a re-

sult of Levin and Nohel [3, Theorem 1].

LEMMA 1: Suppose g(u) satisfies (A3-6) and the functions a(t)

and b(t) satisfy

(1) a(t) € c[0,@) N 2(0,%), (-1 (t) =0

for 0st<w k=0,1,2,3.

b4

(i1) a(t) # a(0),
(131) () € C[0,=) N L}(0,), b (t) € C(0,®) and [b'(¢)]

is bounded on 0 < t < oo,

If u(t) dis any solution of eguation (5) then u(t) exists for all
t20 and u(t), u(t) -0 as t - o,
We shall also need some information concerning the equation

obtained from (5) by linearization,

t

(8) vi(t) = -b(t) - [ a(t-s)g' (0)v(s)ds,v(0) = u.

m{
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We shall study equation (8) using techniques similar to those of
[h]. We shall assume throughout the following discussion that (AL),
(A2) and (A7) are true and that h =k =0.
Since a(t) and b(t) are bounded, it is easily shown that

v(t) exists for all t 2 O, is unique and is of exponential order,
c.f. [4, Lemma 4.1] or [5, Theorem 2.1]. Let V(w) denote the
Laplace transform

©

V(w) = [ exp(-wt)v(t)dt.

o
We shall show that V satisfies the hypotheses of a Tauberian theorem
due to Von Stachd, c.f. [6, p. 277].

An elementary calculation using (4) and (8) shows that

(wt(m/2)g (0)I; (w))V(w) = u_ - (1/2)L,(w)
where

23] [0
I.(w)= 2h (w+n2)-l I.(w) = Lk (w+n2)—l.
1 n > 2 n
n=1 n=1
The functions Ij are clearly analytic functions of the compiex

variable w when w# -1,-4.9,... . If o= Rew=2 0, w# O, then

by (A2)

0
2.2 -
Rel, (o+it) = 2 hn(c+n2X(o+n )Y+ 12) tso.
n=1



Thus

V(w)

is analytic when Rew = O

(9)

From the form of Ij it follows by elementary estimates

that

for

|Ij(n)(w)| < Hnt|T|—n—l, (w=0+ it)

J=1L,2, and n = 0,1,2,...
of

j eand n.

The constant H
Also

1s independent

(10)

v+ (m/2)e’ ()1, ()] = | 7| - B]7| ™"

when w= 0+ i1, ~© < o <, |T|] > 0.

Using (9) and (10) it follows by induction, c.f. [L4, Lemma
5.4, that

(11)

n=0,1,2,...

Iu(n)(w)| < C}([T]—n_l) as | 1| - =,

that for any o

The above estimates and integration by parts show
o’ T>0

(12)

=]

| f exp(iTt)V(oo+iT)dTl +
¥y

-y
| J exp(iTt)V(co+iT)dT| - (as y - )
- 00

uniformly for T £ t < .

The details of this are the same as
those in the proof of Lemma (5.5) of [L].

"
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LEMMA 2. Suppose (Al-2) hold and v(t) solves (8).

a) If h =k =0, then t'v(t) 50 as t —»w for

= "o o ) —_ —

n=0,12

g9y e

b) If h = 0, then the resultant kernal R(t) for equation

(8) satisfies t'R(t) -0 as t »o for n=0,1,2...

PROOF: Our analysis of V(w) shows that the hypotheses of Von

Stachd's Tauberian theorem are satisfied. Thus a) follows immediately.
Part b) is a special case of a) since R(t) is the solution of (8)

in the special case where u = 0 and b(t) = a(t)g'(0).

ITI. PROOF OF THEOREM 1.

Assumption (A2) and line (ka) imply (i) and (ii) of Lemma 1.
Since k_ =0 line (bb) implies (iii). Thus Lemma 1 applies to the
unique solution u of (5). It follows that wu(t) exists for all
t 2 0 and that both wu(t) and u'(t) tend to zero as t — =.

Define
(13) D(u) = g(u) - g'(0)u, (-»<u< )
and
£ £
A(t) = g'(0) [ a(s)ds, B(t) = [ b(s)ds, (0=t < =)

Since D(u) = o(Ju]) and u(t) -0,



le((t))] = g (0)|u(t)]| + ¥ [u(t)], (t>0)

for some constent K, > 0. Thus we will prove that g(u(t)) € Ll(O,m)

if we prove that u(t) e Ll(O,w).

The resultant R satisfies

t
-R(t) + A(t) = [ R(t-s)A(s)ds. (t z 0)

Since u(t) solves

]

t
w(t) = u, - B(Y) - [ A(t-s)e(u(s))as/e (0),

it follows that

u(t)

t t
uo(l-f R(s)as) - (B(t) - [ R(t-s)B(s)ds)

t
- [ R(t-5)D(u(s))as,

o

t
v(t) - [ R(t-8)D(u(s))ds.

The function v is the solution of problem (8).
Pick K > 0 such that |D(u(t))] s K for all t =z 0. By

Lemma 2 we may assume for the same K that
[r(%) = K(t+1)‘5, [v(t)] = K(t+1)™>. (& 2 O)

Since wu(t) —» 0, there exists T >0 such that for all t 2z O
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ID(u(t+T))] = K T|u(t+T)].

Thus when t = O

T
u(t+T) = v(t+T) - [ R(t+T-s)D(u(s))ds
t
- [ R(t-s)D(u(s+T))ds,
o
[u(t+T)| = K(t+1)‘5 + Kg(t+l)—2 +
t
+ [ (t+l-s)_3]u(s+T)|ds,

A

t
Hl(t) + [ H2(t—s)|u(s+T)lds.

The comparison theorem of Nohel [5, Theorem 2.1] implies

that |u(t+T)| = U(t) for all t 2 O where U is the solution of

t
(14) U(t) = Hl(t) + Hg(t—s)U(s)ds.

Since H, and H, € Ll(O,w) and

[ H,(8)at = 1/2,

it follows by the principle of contraction mappings that (14) has a
unique solution U e Ll(O,m). Since U(t) majorizes |u(t+T)| we
see that u ¢ Ll(O,w). This proves part b) of Theorem 1.

To finish part a) note that



4
¥

|
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t
u'(t) = -b' (t) - a(0)g(u(t)) - [ a'(t-s)g(u(s))ds.

Since g(u(t)) -0 and a'(t) is Ll(O,w), the dominated con-

vergence theorem implies

t

[ a' (t-s)g(u(s))ds - 0.

Since b'(t) and g(u(t)) also tend to 0, we see that u™(t) -0
as t — o,
To prove part c¢) note that T(x,t) is given by formulas (6)

and (7). Thus
|T(x,t) - (£ 40 g(u(s))as)/N2| =

| (1g/N2) [ stuteDad + E |5 exn(-0)

t

© I | S exna-t)]gule))]as 0

as t —» o uniform for x on the interval 0 £ x £ 7. This proves

Theorem 1.

IV. PROOF OF THEOREM 2.

Using the definition of wuy, o, a(t) and b(t) it follows

that

t
up(t) = b (t) - J a(t-s)g,(u,())as,




-®

12
where

u (t) = u(t) - w, g (v) = glwu)) - M,

bo(t) = (m/2) g (kn-Mhhrfe)exp(-ngt).
n=1

Parts a) and b) of Theorem 2 may now be proved in exactly the same
manner as part a) of Theorem 1.
The function T(x,t) is defined by formulas (6) and (7).

Since u(t) - u,

t
| f exp(-ne(t-s)g(u(s))ds - g(ul)/n2| =

t > ° >
1] oxp(6-90) () = eey))as + [ exp(ea’s)etoy o

t

= [ exp(s-t)|g(u(s)) - g(ul)lds + Ig(ul)!exp(-t)‘—ao.

Thus uniformly for 0 £ x £ 7 the expression
g 2
T(x,t) - £ N2 - ¥ (g(u,)n cos nx)/n"] s
o 1 1 'n

> t 2 B
I (g loxn(-t) + Iny] | exnn(ee)aCu()as - etu)/e’])
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tends to zero as t —

If M > g(u) for all u (or M < g(u), then it is easily

shown that u(t) — +o(-o) and g(u(t)) - g(+x) (or g(-=)). The

‘behavior of T(x,t) as t -« may then be analyzed using the

method above. This proves Theorem 2.
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